a2 United States Patent

Brueckner et al.

US009473526B2

10) Patent No.: US 9,473,526 B2
45) Date of Patent: *Oct. 18, 2016

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(63)

(60)

(1)

(52)

FIGHT-THROUGH NODES FOR
SURVIVABLE COMPUTER NETWORK

Applicant: Architecture Technology Corporation,
Minneapolis, MN (US)

Inventors: Stephen K. Brueckner, Ithaca, NY
(US); Kenneth J. Thurber, Hopkins,
MN (US)

Assignee: Architecture Technology Corporation,
Minneapolis, MN (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/809,926
Filed: Jul. 27, 2015
Prior Publication Data
US 2015/0334130 Al Nov. 19, 2015
Related U.S. Application Data

Continuation of application No. 14/165,368, filed on
Jan. 27, 2014, now Pat. No. 9,094,449, which is a
continuation-in-part of application No. 13/352,148,
filed on Jan. 17, 2012, now Pat. No. 8,640,238.

Provisional application No. 61/534,817, filed on Sep.
14, 2011.

Int. CL.

HO4L 9/00 (2006.01)

HO4L 29/06 (2006.01)
(Continued)

U.S. CL

CPC ... HO4L 63/1441 (2013.01); GOGF 9/45533
(2013.01); GOGF 9/45558 (2013.01); GOGF

21/552 (2013.01); HO4L 63/1416 (2013.01);

HO4L 63/20 (2013.01); GOGF 2009/45587
(2013.01)

(58) Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,076,801 B2 7/2006 Gong et al.
7,350,234 B2 3/2008 Goseva-Popstojanova et al.

(Continued)

OTHER PUBLICATIONS

Alberts et al., “Mission Assurance Analysis Protocol (MAAP):
Assessing Risk in Complex Environments,” retrieved from http://
www.sei.cmu.edu/reports/05tn032.pdf, Sep. 2005, 59 pp.

(Continued)

Primary Examiner — Beemnet Dada

(74) Attorney, Agent, or Firm — Shumaker & Sieffert,
PA.

(57) ABSTRACT

A survivable network is described in which one or more
network device includes enhanced functionality to fight
through cyber attacks. A Fight-Through Node (FTN) is
described, which may be a combined hardware/software
system that enhances existing networks with survivability
properties. A network node comprises a hardware-based
processing system having a set of one or more processing
units, a hypervisor executing on each one of the processing
units, and a plurality of virtual machines executing on each
of'the hypervisor. The network node includes an application-
level dispatcher to receive a plurality of transaction requests
from a plurality of network communication session with a
plurality of clients and distribute a copy of each of the
transaction requests to the plurality of virtual machines
executing on the network node over a plurality of time steps
to form a processing pipeline of the virtual machines.

16 Claims, 9 Drawing Sheets

US 9,473,526 B2
Page 2

(51) Int. CL

GO6F 9/455 (2006.01)
GO6F 21/55 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

7,607,129 B2 10/2009 Rosu et al.
8,510,747 B2 8/2013 Tian et al.
8,640,238 B2 1/2014 Brueckner et al.

2009/0313620 Al
2010/0043073 Al
2010/0269167 Al
2014/0310810 Al

12/2009 Sedukhin et al.
2/2010 Kuwamura

10/2010 Kashima

10/2014 Brueckner

OTHER PUBLICATIONS

Bargar, “DOD Global Information Grid Mission Assurance,”
CrossTalk, The Journal of Defense Software Engineering, retrieved
at http://www.crosstalkonline.org/storage/issue-archives/2008/

200807/200807-Bargar.pdf, Jul. 2008, 3 pp.

Department of Defense Instruction, “Information Assurance (IA)
Implementation,” retrieved from http://www.dtic.mil/whs/direc-
tives/corres/pdf/850002p.pdf, Feb. 6, 2003, 102 pp.

Duren, “Organically Assured and Survivable Information Systems
(OASIS) Technology Transition Assessment (OTTA),” Defense
Advanced Research Projects Agency, DARPA Order No. K128,
N684m P004, Mar. 2004, 56 pp.

Leech et al., “Socks Protocol Version 5,” Network Working Group,
RFC:1928, Mar. 1996, 9pp.

Maftia, “Malicious-and Accidental-Fault Tolerance for Internet
Applications,” IST Research Project IST-1999-11583, retrieved at
http://spiderman-2 laas.fr/T SF/cabernet/maftia/index html, Jan. 1,
2000-Feb. 28, 2003, 2 pp.

Reiser et al, “VM-FIT: Supporting Intrusion Tolerance with
Virtualisation Technology,” retrieved from http://wraits07.di.fc.ul.
pt/9.pdf, Proceedings of the 1st Workshop of Recent Advances on
Intrusion-Tolerant Systems, Mar. 23, 2007, S pp.

Reynolds et al., “The Design and Implementation of an Intrusion
Tolerant System,” IEEE Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN’02), 2002, 6 pp.
Shi et al., “An Intrusion-Tolerant and Self-Recoverable Network
Service System Using a Security Enhanced Chip Multiprocessor,”
retrieved from http://users.ece.gatech.edu/~leehs/pub/icac05.pdf,
Second International Conference on Autonomic Computing (IAC
2005), Jun. 13-16, 2005, 11 pp.

Prosecution History from U.S. Pat. No. 8,640,238, dated Sep. 30,
2013 through Sep. 30, 3013, 14 pp.

Prosecution History from U.S. Appl. No. 14/165,368, dated Jun. 6,
2014 through Mar. 12, 2015, 42 pp.

US 9,473,526 B2

Sheet 1 of 9

Oct. 18, 2016

U.S. Patent

JAON GUVYONY LS

FUON HONOUHL- LHDI

BAlaE

LIRS I0A NOILLV1SHMOM
LILLEDYY ¥3Isn

I "Old

HOLIMS

BrIaE
HEW S

IanIas
aseqeieg

H4FZLNOY

U.S. Patent Oct. 18, 2016 Sheet 2 of 9 US 9,473,526 B2

10 -

e Bofrwars Rt —
L Botas
S,
e Software -

// Firswail ™
/ 22

dpemtimmi
Motwork

X

Rack af . Cﬂzmpﬂnﬁiﬁea
f pivysbeat B VRS
foservers with)
Bsypeseisoss Urvcarag
{ T Wi
3
%
5
\\

wersriiny Wi
’,\r"

v “\»,,C hmaRgoding o
R SECTRGE .

-
e s b s e s T

FIG. 2

U.S. Patent Oct. 18, 2016 Sheet 3 of 9 US 9,473,526 B2

FIG. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 9 US 9,473,526 B2

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 5 of 9 US 9,473,526 B2

FIG. 5

U.S. Patent Oct. 18, 2016 Sheet 6 of 9 US 9,473,526 B2

FIG. 6

U.S. Patent Oct. 18, 2016

Sheet 7 of

9 US 9,473,526 B2

/ 36
Htgh l/" 34 LU*M
buss et buis
S W Cordrod Wi T e
= Moat 4 |
T —36A
agdministrative h Winrker Vi T
infarisce -+ Host B
L+—388
g Worker Vi 2
32A~ o Host ~32C
Frivileged LAM " 1 Unprivileged LAN
Ethernat Switch he Winrker VM Ethamat Switch
2 Mozt
__ T
2B~ 4 — 39
Pror 3I8A
Storage Array e
SAN Port ¥ Y To network
Ethemnet Swilch clignis
- Por 388
et SEOFAQE ACTEY g
Prirt
g 26N
PL ~{Storage Array -
o

SAN
biegs

FIG. 7

US 9,473,526 B2

Sheet 8 of 9

Oct. 18, 2016

U.S. Patent

8 'Old

| SUCHBHUMULLIOD $5800id w1 pefispaud SYICAOLE JIBID pUR

| =iaug Busn SUDEEUNLLIIGD St BUISN SUCIEUNLLIUIGD pabapaudun sy uo sedal

! PIBUOHITI-JaL MIoABL JLaU0dILIoD-IalLY js1sanbas UCIDBSURIL O M0l
| s o o i e i i e e e S

R

sjuBHD O
hmwmcgm& m@mmkm

.0 3 2 1)
R 9 / ~ *
B3tk lelspielzThig) 2 Fal siuon- N,
H SIS j
E | 3 ,.mu ,m
R L pomieN
@ | oy o~
£ o8 ;./ .,..,.x
Jonepyen - [Y
2 |
<

sabauepy w = T

soyopedsg = w wﬁ%»_
o SCINEE
g I A

|
=
apoy ybnoayy by oy 7 sjsanbag Jusys
paspIOUN

U.S. Patent Oct. 18, 2016 Sheet 9 of 9 US 9,473,526 B2

10000

1000

100

=R~ I~ I = I = I =N« I = I
o w3 B 4 S T~ S T U o B o
w {iudasad] Auaiy3

FIG. 9

US 9,473,526 B2

1
FIGHT-THROUGH NODES FOR
SURVIVABLE COMPUTER NETWORK

This application is a continuation of U.S. application Ser.
No. 14/165,368, filed Jan. 27, 2014, which is a continuation-
in part of U.S. application Ser. No. 13/352,148, filed Jan. 17,
2012, which claims the benefit of U.S. Provisional Appli-
cation Ser. No. 61/534,817, filed Sep. 14, 2011, the content
of each of which is hereby incorporated by reference.

TECHNICAL FIELD

The invention relates to computer networks and, more
specifically, detection and recovery from network attacks.

BACKGROUND

Despite existing security efforts, computer networks are
susceptible to attack and compromise. Complete isolation of
a network or system provide by the network may not always
be an acceptable response to a detected cyber attack.

SUMMARY

The techniques allow for a “survivable network”™ in which
one or more network device may be able to “fight through”
cyber attacks. This may be of particular critical network
operations. The techniques provide for a “survivable” net-
work that may be capable of carrying on, in a perhaps
degraded state, during an attack so as to continue to provide
critical services. Because human reaction times can be very
slow in comparison to the speed of cyber attacks, the
survivable system may be utilized to provide an automated
response capability so the network can dynamically respond
to threats.

A Fight-Through Node (FTN) is described herein, which
may be a combined hardware/software system that enhances
existing networks with survivability properties. The Fight-
Through Nodes may replace existing nodes within the
network, such as nodes hosting critical services in a net-
work. Example nodes include database servers, information
systems, application servers, email servers, FTP servers,
web servers or even network infrastructure such as layer
three routers or layer two switches, firewalls, intrusion
detection system, gateways or the like. Additional example
nodes include client devices, laptops, mobile devices, end-
user workstations and the like. Networks equipped with
FTNs as described here may be resilient, enabling critical
processes to operate despite attacks on the node or impacts
on other parts of the network.

As enterprises rely ever more heavily on their information
systems, the frequency and sophistication of cyber attacks
continues to rise. The techniques described herein improve
the survivability of a network’s critical client and server
nodes, infrastructure nodes, and the like, making it possible
to fight through cyber attacks. Rather than being disabled by
such attacks, servers providing critical services will continue
to operate in spite of the attack. Entities may use the FTNs
described herein to replace critical nodes their network or
information systems. The assurance provided by the FTNs
may be applicable to a variety of industries having critical
systems (e.g., utilities, health care, financial services, trans-
portation, military, telecom, retail, information technology).

In one example, a network node comprises a hardware-
based processing system having a set of one or more
processing units, and a hypervisor executing on each one of
the processing units; and a plurality of virtual machines

10

15

20

25

30

35

40

45

50

55

60

65

2

executing on each of the hypervisor. The network node
includes an application-level dispatcher to receive a plurality
of transaction requests from a plurality of network commu-
nication sessions with a plurality of clients and distribute a
copy of each of the transaction requests to the plurality of
virtual machines executing on the network node over a
plurality of time steps to form a processing pipeline of the
virtual machines.

A method comprises receiving, with a network node, a
plurality of transaction requests from a plurality of network
communication sessions with a plurality of clients, and
distributing a copy of each of the transaction requests to a
plurality of virtual machines executing on the network node
over a plurality of time steps to form a processing pipeline
of' the virtual machines. The method further comprises, upon
distributing a threshold number (n) of the transaction
requests to the plurality of virtual machines, detecting
whether any of the virtual machines in the processing
pipeline has been compromised. When none of the virtual
machines in the processing pipeline has been compromised,
the processing pipeline of virtual machines are checkpointed
by recording a state for each of the plurality of virtual
machines. When at least one of the virtual machines in the
processing pipeline has been compromised, the compro-
mised virtual machines may be removed from the processing
pipeline.

The techniques provide improved survivability in net-
works via technologies enhancing likelihood of continuity
and transaction completion, allowing network operation to
persist under conditions of extreme attack and/or degraded
performance.

Architectural and operational strategies are described that
may ensure survivability, resiliency, and adaptability to
“fight through” severe cyber degradation and compromise,
and to make the adversary’s job harder and more costly. The
techniques described herein may strengthen cyber readiness
in a contested and degraded cyber operational environment,
providing a set of automated capabilities to respond dynami-
cally to escalating threats. The techniques may include but
are not limited to: employment of application execution/
database transaction sandboxes to check results before
actual execution, business-unit failover to change entire
suites of critical processes when compromise/failure occurs.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a network diagram showing an example network
having fight-through nodes with survivability properties for
resiliency to network attacks.

FIG. 2 is a schematic diagram illustrated in example in
which, physically, a FTN is a small rack of servers con-
nected by two networks.

FIG. 3 is a diagram illustrating a dispatcher within a FTN
dispatching initial incoming transaction requests (#1, #2) to
a first few worker VMs (1, 2) in a group of n virtual
machines.

FIG. 4 is a diagram illustrating a subsequent state of the
pipeline of VMs where the dispatcher has deployed n
incoming transaction requests (#1-#n) over n timesteps to
the set of VMs (1-2) so as to form a fully loaded pipeline of
virtual machines.

FIG. 5 is a diagram illustrating a subsequent state of the
pipeline of VMs where the dispatcher has deployed a second
set of n incoming transaction requests (#1-#n) over a second
n timesteps to the set of VMs (1-#). In this example, VMs
1-3 are determined to be in a compromised state.

US 9,473,526 B2

3

FIG. 6 is a diagram illustrating a subsequent state in
which the compromised VMs 1-3 have been removed from
the front-end of the pipeline.

FIG. 7 is a block diagram illustrating an example FTN
hardware architecture.

FIG. 8 is a block diagram illustrating an example FTN
architecture.

FIG. 9 illustrates a graph of a predicted efficiency of an
FTN versus the size of the worker VM pool according to a
mathematical model using an assumed set of constraints.

DETAILED DESCRIPTION

A Fight-Through Node (FTN) is described, which is a
hardware/software system to enhance networks with surviv-
ability properties. In some example, not all nodes in a
network are equally important. In many large-scale net-
works, some nodes are immediately critical to success
whereas other nodes play a secondary role. Network nodes
that host one or more essential services may be viewed as
critical nodes that may be good candidates for to utilize the
techniques described herein to achieve increased resiliency
to network attacks.

FIG. 1, for example, illustrates an example network 2 in
which three nodes 10A, 10B and 10C (“nodes 10”) have
been identified as critical for the operation of data analysis
and dissemination. Without operation of nodes 10, for
example, network 2 may not be able to provide any level of
service; conversely, a network with only these nodes may be
able to provide at least a minimal amount of service. FIG. 1
is an example and the techniques herein may be applied to
fewer or more nodes, such as all nodes within a network.

A Fight-Through Node (FTN) is described that may be
used to replace nodes in a network. Networks equipped with
FTNs may have increased resiliency, enabling critical pro-
cesses to operate despite attacks on the node or impacts on
other parts of the network. In some embodiments, an FTN is
a hardware-based solution with customized software, e.g., a
small rack of servers executing the software, used to replace
an existing operation-critical server or workstation. In other
example implementations, an FTN may be an end-user
device (e.g., a client computing device) that applies the
techniques described herein to provide client-side resiliency
to network attacks. For example, the techniques described
herein may be applied on end-user devices (e.g., laptops,
workstations, mobile computing devices) to process outgo-
ing client requests and/or service inbound requests from peer
client devices, servers or other computing devices.

FTNs are resilient to attacks, operate reliably despite
compromise (to a threshold level), and can be easily re-
deployed after being irretrievably compromised. The meth-
ods used to achieve these capabilities may include redun-
dancy, sandboxing, synchronization, checkpointing, and
restoration. While survivable against network attacks such
as denial-of-service, the FTN’s design is particularly effec-
tive against more insidious host-based attacks; i.e. attacks
that compromise a server or workstation.

FTN’s operation captures the running state of a program
(and its storage) between discrete Input/Output (1/O) trans-
actions. The FTNs extends this transaction concept to other
programs including services and types of network accesses
such as sessions.

In one example, each FIN 10 contains a set of one or
more processing units (e.g., blades) executing hypervisors
that provide an operating environment for an ordered group
of n (where n is an arbitrary number) cloned Virtual
Machines (VMs). These VMs host the node’s service(s) and

10

15

20

25

30

35

40

45

50

55

60

65

4

act as transaction sandboxes. Incoming or outgoing trans-
action requests are dispatched to the first worker VM in this
group. After each transaction completes, the next VM in the
chain is synchronized with the previous one, resulting even-
tually in an active record of the previous n transactions. That
is, only the oldest transaction in the series will have been
executed on the last VM, and all n transactions of the series
will have been executed on the first VM. After n transactions
are complete, incoming transactions are temporarily sus-
pended while the integrity of the VMs is checked with an
Intrusion Detection System (IDS). If the VMs remain
uncompromised, all VMs within the processing pipeline are
backed up, or checkpointed, a control unit connected via a
privileged LAN and then the next n transactions are pro-
cessed by the dispatcher. If after the set of n transaction any
VMs are compromised, the control unit instructs the hyper-
visors to automatically isolate the compromised VMs and
saves their state for later forensic analysis. The control unit
directs the hypervisors to immediately start replacement
VMs from a warm backup, i.e., the most recent checkpoint,
and insert into the processing pipeline of VMs in place of the
compromised VMs. The source of the transaction that
caused the compromise is (optionally) blocked at the FTN’s
firewall to prevent re-infection. In this way, upon detecting
one or more compromised VMs, the compromised VM are
isolated from the pipeline.

Example

Suppose that, in a network without FTNs, an attacker uses
a database transaction to trigger a zero-day exploit that
compromises a database server and its hot standby server,
which was susceptible to the same exploit because it had
been mirroring transactions. The attacker, for example, may
install a rootkit onto both machines, allowing the attacker to
launch a variety of denial-of-service (DoS) or stealthy
data-centric attacks against the data. In the conventional
network, the presence of the rootkit is immediately detected,
but the servers must either be taken offline for repair or
allowed to run while under control of the attacker. Neither
choice is acceptable.

By converting the database server to an FTN, the attack
is neutralized and operations can safely continue. The com-
promise and rootkit are isolated within one or more of the
FTN’s sandbox VMs. The compromised VMs are rolled
back to clean images from warm checkpoints and the FTN
continues to service incoming transaction requests. The
compromised VMs’ disks and memory states are provided to
a response team for forensic analysis, so the exploit can be
characterized and the vulnerability patched. The source
address of the malformed transaction is blocked at the
FTN’s firewall, preventing re-infection from that vector.

FTNs may provide a variety of features. As one example,
the FTN may use sandbox VMs to isolate cyber attacks and
prevent them from affecting other systems on the network.
Meanwhile, the service offered by the FTN continues to run
on unaffected VMs. The FINs may be easily to install and
deploy in existing environment. For example, one embodi-
ment of an FTS may utilize a rack of commodity servers that
can run the same software as existing servers. FTNs can
therefore either replace or shadow existing transaction-
based servers on networks. As another example, the FTNs
may automatically respond in real-time to cyber attacks.
When attacked, FTN automatically shuts down affected
VMs and restores them from recent backups. It also recon-
figures its internal firewall to block source of attack.

US 9,473,526 B2

5

FIG. 2 is a schematic diagram illustrated in example in
which, physically, a FTN 10 is a small rack of servers 20
connected by two networks 21, 22. FIG. 2 illustrates the
VMs hosted by a server. As shown, the FTN includes an
ordered group of “worker” VMs (1-9) that execute transac-
tion requests from the operational network. Although there
are nine worker VMs shown in FIG. 2, the system can scale
to provide fewer or more VMs to improve performance. The
worker VMs are regularly monitored for compromise with
an IDS. When they are “clean” they are backed up and when
they are “dirty” (i.e., compromised) they are restored from
a recent (warm) clean backup, effectively isolating and
removing the compromised version of the VM from the
pipeline. The FTN maintains service when attacked by
verifying post-transaction integrity using VMs as sand-
boxes, and by eliminating compromised worker VMs and
replacing them with fresh ones.

In one example, the FIN has a single address on the
operational network 23. A firewall and a software router,
referred to herein as a dispatcher, mediates between the
worker VMs and the operational network 23. The firewall
provides an adaptable first line of defense for the FTN; when
an attack is detected the firewall can be automatically
reconfigured to block future attacks from the same source
after the worker VM are restored. The dispatcher 25 stores
and forwards transaction requests and responses. That is,
dispatcher 25 forwards transaction requests from clients to
the worker VMs. The dispatcher may mirror transactions
across the worker VMs, but not to all workers VM simul-
taneously (as discussed below). Dispatcher 25 instead
sequentially deploys copies of the transaction in a delayed
fashion to the worker VMs so as to establish a processing
pipeline of VMs working on the same transactions, e.g.,
from the same network communication session or from
sessions with multiple clients. Dispatcher 25 forwards
delayed, unified responses from the worker VMs back to
clients after waiting to determine whether transactions were
attacks or not (avoiding the problem of “rolling back™ the
clients). By forwarding transaction messages to the VMs
serially, dispatcher 25 forces the VMs’ services into deter-
ministic behavior, avoiding the complication of race condi-
tions between simultaneous requests.

There are a number of potential strategies for using the
pool of sandbox VMs 1-9 to balance FTN resiliency with
performance. One example is to line them up into a “pro-
cessing pipeline,” in which each transaction is executed on
each VM but in a different time step. That is, the first
transaction is executed on VM1, then during the next “time
step” the first transaction is executed on VM2 while the
second transaction is executed on VMI1. When the first
transaction in a sequence is executed on the final VM (i.e.,
a set of n transactions have been loaded into the queue of n
VMs), all of the VMs are paused, checked for evidence of
attack, and restored as needed. If none are compromised, the
entire state of the set of VMs is checkpointed at the same
time. This process is repeated after deploying another set of
n transaction to the VMs. This pipeline approach allows the
FTNs to perform the security checks and create backups less
frequently (rather than after every transaction, after every n
transactions where n is the number of VM workers), yet still
provides a set of discrete checkpoints that are only one
transaction apart so the dispatcher can “roll back” the FTN
to the appropriate point.

The clean checkpoints of all VMs are stored on the
checkpoint server. In one example, this host is not connected
to the VM, but rather to the hypervisors hosting the VMs on
a privileged network. The FTN’s critical processes (syn-

10

15

20

25

30

35

40

45

50

55

60

65

6

chronization, integrity checking, checkpointing, and resto-
ration) are executed by the hypervisors as directed by the
control module, so that under normal operation (which
includes “normal” attacks; i.e., attacks on processes or their
operating systems) the critical processes are safe from
compromise. In the unlikely event that an attacked VM
escalates privilege and compromises its hypervisor, the
entire FTN must be restored from a cold backup, i.e., its
initial configuration. This restoration would involve swap-
ping the hard drives of the physical servers, which requires
manual intervention but can be still accomplished within
minutes. The compromised hard drives would be made
available to a response/forensics team for analysis.

The operation of an FTN utilizes one or more intrusion
detection systems (IDSs). For the case of an attack on
service availability, (a network or host-based DoS), a DoS
that is not easily detectable is a rather ineffective attack and
does not require resiliency. More subtle is an attack that
quietly compromises a node for the purpose of stealthily
exfiltrating or altering data. IDSs detecting such stealthy
attacks exist, and the FTN may be used with such an IDS to
detect attacks on a node’s confidentiality and integrity.
Because the FTN’s server hypervisors may have a higher
level of privilege than the VMs, IDSs executed from the
hypervisors may provide FINs with a higher level of
assurance than typical IDSs executing within the VMs could
achieve.

The architecture of the FTNs is configured to operate on
a per transaction basis. Synchronization, checkpointing, and
restoration within FTNs may be driven by breaking down
1/O of a service (e.g., communication sessions such as FTP,
HTTP or the like) into discrete transactions. The simplest
types of transactions involve the exchange of a single pair of
messages; for example a database commit request and
acknowledgement of success or an HTTP GET request and
content-filled response. Net-centric Service Oriented Archi-
tectures (SOAs), as well as much of the Internet at large,
follow this paradigm.

Since dispatcher 25 performs synchronization using ser-
vice-level transactions, it is able to define and detect trans-
actions at the application level of the network stack. Dis-
patcher 25 may extract higher-level semantics from the
lower layers of the stack, such as the transport layer (TCP
packets). Such extraction may be protocol-specific, and
possible for any discrete messaging protocol with a known
specification. Messages may be sent as text (e.g., web
service SOAP/XML messages) or as programmatic data
structures (e.g., Java RMI data objects), and FTNs may
support both.

In one example, dispatcher 25 is a transaction router
executing within a VM that presents the outside network
with a single interface to the FTN, accepts incoming trans-
action requests from clients, individually forwards them to
the worker VMs in the pipeline, and sends transaction
responses back to the clients. Dispatcher 25 is transaction-
aware for the specific service(s) its FIN is providing.
Dispatcher 25 provides a store-and-forward component for
transactions that sends transaction requests to the worker
VMs after each synchronization time step, and responses to
clients can only be sent after the IDS verifies worker VM
integrity post-transaction. The store-and-forward mecha-
nism may occur at the application level (i.e., layer 7 and up);
that is, it may accept and acknowledge the multiple TCP
packets that constitute a single transaction message in accor-
dance with the application-layer protocol. In addition, soft-
ware-encrypted sessions may be handled at the application
level. In this case, the dispatcher may act as a proxy, making

US 9,473,526 B2

7

encrypted connections with clients rather than the individual
worker VMs doing so. Hardware encryption would be
orthogonal, and therefore straightforward to accommodate.

When a worker VM becomes compromised, that VM and
all preceding VMs in the pipeline (VMs that have executed
transaction subsequent in time to the transactions executed
by the compromises VM) are reconstituted. This recovery
process may start with promotion of the most up-to-date
“clean” VM to the front of the pipeline and proceeds with
identifying which warm checkpoints to use for reconstitu-
tion.

A survivability threshold of an FTN may be applied; i.e.,
the level of attack and/or compromise may be determined
and compared to a threshold before the FTN is taken offline
and reconstituted from a cold backup.

Each FTN worker VM may have an independent disk
image containing its operating system and services. For
nodes requiring large amounts of data storage, the worker
VMs may be connected to a single storage array. A trade-off
must be made between resources and security for these types
of nodes. A centralized storage may save on hardware,
space, and power requirements, but may only protect against
compromise of the VMs’ OS and processes. This still
presents considerable protection because it severely limits
the actions an attacker can take. Alternatively, data storage
may be replicated on independent disks for all VMs, which
requires more resources but provides additional protection
against data corruption and theft. In this case, checkpointing
may occur for each VMs’ disk space.

The system may be configurable between the number of
worker VMs and the frequency of integrity checks. This
allows an administrator to manage the trade-off between
resources and performance. The factors affecting perfor-
mance include (1) the time between periodic IDS checks/
checkpointing, (2) the processing time required for the IDS
checks/checkpointing, and (3) the transaction latency intro-
duced by the depth of the worker VM pipeline. More worker
VMs improves performance in the first two cases, but
degrades it in the third case. In all cases, additional VMs
require additional hardware, space, and power.

In addition, an administrator may configure a level of the
IDS checks (security) so as to control the time requirement
for the integrity checks (performance). At the simplest level,
the IDS may be configured to only checks for DoS attacks
by verifying that the VM’s critical service is still running
and available; this would be a quick check. At a higher level,
the IDS may be configured to look for malware in the VM’s
RAM or disk; this would take longer but defend against
more subtle threats.

In some embodiment, dispatcher 25 may include func-
tionality of an Application-Level Gateway (ALG) that oper-
ates at the network layer. That is, an ALG is a type of proxy
that dynamically helps certain applications work through
firewalls and NAT connections. To do this, the ALG under-
stands the protocols used by the applications it supports. It
may perform deep packet inspection to set up ephemeral
ports, routes, and connections based on the incoming pro-
tocol being used.

The FTN dispatcher 25 may extend the functionality of
the ALG by supporting simple text protocols such as HT'TP
and FTP but also a variety of protocols. The dispatcher may
set up connections between clients and servers, and also
extract, store, and forward transaction messages itself rather
than simply set up connections for pass-through communi-
cations. Finally, to support protocols that can only be under-

30

35

40

45

50

55

60

65

8

stood at the session or application layer, the FTN dispatcher
may operate as a proxy, making its own connections to both
the client and server.

For example, to handle encrypted (SSL) sessions by
tunneling the connection, or by using the SOCKS protocol
[http://tools.ietf.org/search/rfc1928], dispatcher 25 may
operate as a proxy. In this case, dispatcher 25 may be
provided a server key for the worker VMs and make the
connection to clients. It could then either forward the
encrypted packets, or create decrypted (plaintext) packets to
forward to the worker VMs.

In one example, the dispatcher serializes transactions to a
single pipeline of VMs to simplify synchronization. Alter-
natively, the dispatcher may parallelize some types of trans-
actions (e.g., read-only transactions)

The worker VMs are backed up, or checkpointed, after the
periodic IDS scans. The VM’s memory and disk image may
be written to files. In some cases, much of a VM’s RAM may
already stored on disk in swap space, and Copy-on-Write
(CoW) disk images only store the differences between a file
system’s shutdown state and its active one. These two
factors may be used to reduce the time required to create a
checkpoint.

A simple write of VM state as described above is called
a “discard” checkpoint. Periodically the FTN could perform
“merge” snapshots, which merge the CoW differences from
a discard snapshot to a previous snapshot or the original disk
image. This would reduce the number of stored snapshots.
Another alternative is to just throw away discard snapshots
as they age, but this may cause discontinuities in live data.
The types of snapshots available and their age could be
primary factors in determining which snapshots to restore
after one or more worker VMs are compromised.

VMs may become compromised yet remain undetected
for an extended period. To address this problem, VMs could
be periodically restored from a cold, but known to be clean,
backup. This technique is called proactive recovery. Such a
technique may be simpler to implement in the case where
worker VMs all tie in to a common database; the VMs could
be refreshed without disrupting the results of their transac-
tions. This technique would be more difficult to apply, when
all VMs and their storage is fully replicated, without losing
the database’s state changes.

In one example, FTNs are used with respect to applica-
tion-level database transactions using a distributed storage
model; that is, each worker VM in the FTN has its own
database. The FTN’s internal state can be synchronized with
that of the operational network on which it resides, and the
FTN can recover from a host-based denial of service attack.

FIG. 3 is a diagram illustrating dispatcher 25 dispatching
initial incoming transaction requests (#1, #2) to the first two
worker VMs (1, 2) in a group of n virtual machines. For
example, during a first time step transaction #1 from net-
work communications may be dispatched to the first VM in
the group. During the second time step, the first transaction
is dispatched to a second VM and a second transaction for
the network communications serviced by the FIN is dis-
patched to the first VM, as shown in FIG. 3. In this way
transactions for the multiple communication session may be
serialized and deployed to the VMs in a pipelined fashion.

FIG. 4 is a diagram illustrating a subsequent state of the
pipeline of VMs where dispatcher 25 has deployed n incom-
ing transaction requests (#1-#n) over n timesteps to the set
of VMs (1-z) so as to form a fully loaded pipeline of virtual
machines. At this point, all of the VMs are paused and
validated with IDS checks for evidence of attack. In this

US 9,473,526 B2

9

example, no attack is detected (shown by checkmarks) and
the full set of virtual machines is checkpointed at once.

FIG. 5 is a diagram illustrating a subsequent state of the
pipeline of VM where dispatcher 25 has deployed a second
set of n incoming transaction requests (#1-#n) over a second
n timesteps to the set of VMs (1-z). In this example, VMs
1-3 are determined to be in a compromised state.

FIG. 6 is a diagram illustrating a subsequent state in
which the compromised VMs 1-3 have been removed from
the front-end of the pipeline. Remaining VMS 4-n are
promoted to earlier stages of the pipeline and new VMs are
created at the tail end of the pipeline to once again form a
pipeline of n VMs. The new VMs may be instantiated by the
hypervisor and initialized with a most recent checkpointed
state to ensure consistency. Compromised VMs 1-3 may be
automatically isolated and their state saved for later forensic
analysis of VMs.

FIG. 7 is a block diagram illustrating an example FTN
hardware architecture 30. In some examples, FTNs may
utilize three general categories of hardware: rack-mounted
servers with virtualization support, rack-mounted storage
arrays, and Ethernet switches. In such examples, the servers
may include two general categories: a single host for the
control VM (e.g., control VM host 34) and one or more hosts
for worker VMs. In the example of FIG. 7, FTN hardware
architecture 30 includes a group of worker VM hosts 36A,
36B, and 36N, collectively referred to herein as “worker VM
hosts 36.” One or more storage arrays may be connected to
form storage area network (SAN) 39. For instance, as
illustrated in FIG. 7, SAN 39 includes storage arrays 38A,
38B, and 38N, collectively referred to herein as “storage
arrays 38.” Privileged LAN Ethernet switch 32A, SAN
Ethernet switch 32B, and unprivileged LAN Ethernet switch
32C, collectively referred to herein as “Ethernet switches
32,” provide network connectivity for three separate com-
munications busses: an unprivileged (low) bus, a privileged
(high) bus, and a SAN bus.

FTN hardware architecture 30 may utilize commercially-
available (i.e., commodity) hardware, thereby facilitating
installation and deployment of the FIN. For instance,
because FTNs may utilize such commodity hardware, the
FTN may be implemented without the need for specially-
designed hardware. Moreover, each of the three hardware
types utilized by the FIN (e.g., servers, storage arrays, and
switches) may be homogenous, thereby facilitating configu-
ration and replacement of the hardware devices. For
instance, control VM host 34 and each of worker VM hosts
36 may be the same type of server device. Similarly, each of
Ethernet switches 32 may be the same type of Ethernet
switch, and each of storage arrays 38 may be the same type
of storage array.

Control VM host 34 and worker VM hosts 36 execute
each execute hypervisors that provide an operating environ-
ment for one or more privileged and unprivileged VMs. A
privileged VM has access to the hypervisor, whereas an
unprivileged VM does not. Control VM host 34 executes an
unprivileged VM including three of the principal software
components of the FTN: a software firewall, dispatcher, and
accumulator (discussed in further detail below). Each of the
worker VM hosts 36 executes one or more unprivileged
VMs that form the worker pool for processing client trans-
actions. In addition, each of the worker VM hosts 36
executes a privileged VM.

As illustrated, control VM host 34 and each of worker VM
hosts 36 connect to the high and low busses utilizing a
separate network port for each bus. The low bus ports are
connected directly to each host’s unprivileged VMs, which

25

30

35

40

45

50

10

process client transactions that may potentially compromise
the integrity of the VM. The high bus ports are connected to
each host’s privileged VMs, which execute the command
and control communications of the FTN. One exception is
the unprivileged VM executing on control VM host 34,
which is connected to both the privileged (high) and unprivi-
leged (low) busses to enable the VM to process client
transaction information as well as synchronize with the
software components on the high bus. Safeguards may be
implemented to protect the integrity of this VM and prevent
cross-communication between the privileged and unprivi-
leged networks.

SAN 39 includes storage arrays 38, each of which
includes one or more hard drives and software to interface
with other storage arrays. To increase network 1/O, each of
storage arrays 38 include two memory controllers. Each of
the two memory controllers includes a dedicated network
port connected to the SAN bus via SAN Ethernet switch
32B. SAN Ethernet switch 32B provides a single interface
for SAN 39 to the high bus via privileged LAN Ethernet
switch 32A, such as by using the internet Small Computer
System Interface (iSCSI) network storage protocol.

A FTN may use SAN 39 for both long-term archiving of
VM checkpoints and centralized storage of shared software
used by worker VM hosts 36, such as the checkpointing and
validation modules (described below). SAN 39 enables
management of VM checkpoints at the block level using
Logical Volume Management (LVM).

FIG. 8 is a block diagram illustrating an example FIN
architecture. As illustrated in FIG. 8, an example FTN
architecture includes firewall 44, dispatcher 46, worker VMs
48, accumulator 50, manager 52, validator 54, checkpointer
56, and central storage 58. In some examples, firewall 44,
dispatcher 46, worker VMs 48, and accumulator 50 are all
hosted by unprivileged VMs (i.e., VMs without access to the
hypervisor executing on one or more processors to provide
an operating environment for the VM), and are connected to
an unprivileged LAN over which client transactions are
communicated. Network communications over the unprivi-
leged LAN may be considered potentially dangerous. That
is, network communications over the unprivileged LAN
may include data or other communications that may poten-
tially compromise the integrity of the VMs, such as worker
VMs 48 or other VMs associated with the FIN. As illus-
trated in FIG. 8, Firewall 44, dispatcher 46, and accumulator
50 are also connected to privileged LAN 51 for command
and control messaging.

The FTN uses inter-process communications (IPC) and
network communications on privileged LAN 51 to synchro-
nize each of the components of the FIN. Because firewall
44, dispatcher 46, and accumulator 50 may be hosted by a
single VM, they may exchange synchronization communi-
cations using IPC. Components located on different VMs or
different physical hosts exchange synchronization commu-
nications using privileged LAN 51.

In one example implementation, synchronization mes-
sages may be passed between components using a two-level
communications protocol. Low-level message passing
primitives support high-level messages by managing com-
munication channels and transmitting the high-level mes-
sages. The primitives may be used for both network com-
munications and IPC to make communications substrate
transparent. As one example, five primitive operations
include: LISTEN, LINK, WRITE_LINK, READ_LINK,
and BREAK_LINK. The five primitive operations may be
used to: open a receiver’s end of a channel, open a sender’s
end of a channel, place a message in the receiver’s message

US 9,473,526 B2

11

queue, fetch a message from the receiver’s message queue,
and terminate the channel (from either end).

As an example, five high-level message types that may be
exchanged using the low-level messaging primitives
include: queries, status updates including unsolicited
updates or responses to queries, commands, errors, and
interrupts. Examples of queries include, but are not limited
to, “verify VM x is running,” “verify service is ready,” and
“verify component x operation.” Examples of status updates
include, but are not limited to, “VM x is running,” “VM x
is ready for requests,” “component X is running,” “all VMs
are running,” “all VMs are ready for requests,” “VMx ready
for connection,” “VM x ready for validation/checkpoint-
ing,” “VM x validated/checkpointed,” “VM x archived,”
“VM x checkpoint y is located at z,” “VM x loaded onto host
y,” “logical VM ordering is . . . ,” and “VM network
addresses are” Examples of commands include, but are
not limited to, “start VM x using image y,” “load VM x onto
host y,” “add firewall rule x,” “pause/unpause VM x,”
“verify/checkpoint VM x,” “archive VM x checkpoint y,”
“shut down/destroy VM x,” and “start/stop/reset component
x.” Examples of errors and exceptions include, but are not
limited to, “timeout,” “null pointer,” “resource does not
exist,” and “insufficient permission.” Examples of interrupts
and faults include, but are not limited to, “segmentation
fault,” and “user interrupts.”

Manager 52, validator 54 and checkpointer 56 are hosted
by privileged VMs (i.e., VMs with access to the hypervisor),
and are connected to privileged LAN 51. Central storage 58
is also connected to privileged LAN 51, but is not hosted by
a VM in the example of FIG. 8. Network communications
over privileged LAN 51 may be considered secure, and are
used for command and control communications, including
for system administration.

In some examples, transaction processing is accomplished
in a loop using the unprivileged LAN between network
clients 41, firewall 44, dispatcher 46, worker VMs 48, and
accumulator 50. As illustrated in FIG. 8, dispatcher 46
receives unordered client requests 40 via firewall 44. In
response, dispatcher 46 processes the unordered requests
and inserts them into an ordered queue that is forwarded to
the worker VMs 48 (i.e., the worker VM pipeline). Dis-
patcher 46 may, in certain examples, be implemented using
a plugin architecture, thereby enabling support for multiple
network protocols using separate modules for distinct pro-
tocols. Such a plugin architecture may enable an FTN to
support any combination of protocols for which plugins
exist.

As one example, the dispatcher may sequentially deploy
copies of the transaction in a delayed fashion to the worker
VMs so as to establish a processing pipeline of VMs
working on the same transactions according to the following
operational algorithm: (1) listen to firewall 44 for incoming
unordered client transaction requests 40, (2) receive unor-
dered incoming client transaction requests 40 from firewall
44, (3) parse unordered client requests 40 into discrete
transactions, (4) order the discrete transaction requests and
insert the ordered transaction requests into an ordered queue,
(5) wait for at least one of accumulator 50, manager 52, or
checkpointer 56 to indicate that the next VM of worker VMs
48 is ready to receive new requests, (6) remove the request
from the ordered queue, (7) forward the request to the next
worker VM in the pool of available worker VMs 48, and (8)
record the request to a log (e.g., for later recovery or forensic
analysis). The dispatcher repeats the operational algorithm
(i.e., loops through operations 1-8) until the worker VM pool
48 is full. In response to determining that the VM pool is

10

15

20

25

30

35

40

45

50

55

60

65

12

full, the dispatcher signals validator 54 (e.g., using privi-
leged LAN 51) that the integrity of a VM of worker VMs 48
is ready to be checked and continues to repeat the opera-
tional algorithm.

In the example of FIG. 8, accumulator 50 receives trans-
action results from worker VMs 48 and stores them until the
integrity of the VMs has been checked. If the VMs remain
uncompromised, accumulator 50 forwards the unified
responses from worker VM 48 back to network clients 41
(e.g., using the unprivileged LAN). As one example, accu-
mulator 50 may operate according to the following opera-
tional algorithm: (1) connect to unpaused VMs when sig-
naled by at least one of manager 52 or checkpointer 56, (2)
listen for VM transaction results from clients, (3) wait for
transaction results from worker VMs 48, (4) receive one or
more transaction results from worker VMs 48, (5) parse the
received VM transaction results into discrete transactions,
and (6) insert non-duplicate results in an ordered queue.
Accumulator 50 repeats the operational algorithm until
accumulator 50 receives an indication from validator 54 that
the integrity of a VM of worker VMs 48 has been checked.
In response to receiving the indication from validator 54,
accumulator 50 removes the requests from the queue, for-
wards the unified responses from worker VMs 48 back to
network clients 41, records the results to a log, and continues
to repeat the operational algorithm.

Worker VMs 48 receive client transaction requests from
dispatcher 46, process the requests, and forward the results
to accumulator 50. For instance, a worker VM may operate
according to the following operational algorithm: (1) receive
a start or unpause command from one or more of manager
52 or checkpointer 56 via the hypervisor, (2) wait for
verification of a readiness status request from manager 52,
(3) reply to the readiness status request received from
manager 52, (4) wait for a client request from dispatcher 46,
(5) receive a client request from dispatcher 46, (6) process
the received request, (7) forward the transaction results to
accumulator 50, and (8) signal dispatcher 46 that the worker
VM is ready to receive a new client request. The worker VM
repeats operations (4) through (8) of the operational algo-
rithm until the pool of worker VMs 48 is full. When the pool
of worker VMs 48 is full, validator 54 pauses the worker
VMs to check the integrity of worker VMs 48 (described
below). If the VMs remain uncompromised, all VMs within
the worker VM pipeline 48 are backed up, or checkpointed.
After checkpointing is complete, worker VMs 48 are
unpaused and continue to operate according to the opera-
tional algorithm beginning from operation (1) of the algo-
rithm.

In the example of FIG. 8, manager 52 is hosted by a
privileged VM executing on a control VM host (e.g., control
VM host 34 of FIG. 7). Manager 52 coordinates overall FTN
execution by synchronizing the other FTN components in
various operational modes, including recovery mode.
Example operations of manager 52 include, but are not
limited to: coordinating initialization and boot-up of the
FTN system; initialization of other components included in
the FTN; setting up the pool of worker VMs upon system
startup, full condition, or during recovery; verifying when
the worker VM pool is ready to receive transaction request;
informing other components of the FIN of the logical
ordering and network addresses of the worker VMs; han-
dling faults, errors, exceptions, and interrupts; coordinating
the recovery process among other components of the FTN;
disassembling the worker VM pool upon system shutdown,
full condition, or during recovery; coordinating system
shutdown; and monitoring the unprivileged control VM for

US 9,473,526 B2

13

compromise. In addition, the run state of worker VMs may
be controlled by manager 52 via the hypervisor. Manager 52
may include a user interface (U]) to enable administrators to
configure, control, and monitor the status of the FTN. As one
example, a Ul provides one or more controls (e.g., knobs,
buttons, sliders, and the like) to enable an administrator to
vary parameters associated with the FTN, such as the
number of VMs included in the worker VM pool, how many
transactions to dispatch simultaneously, etc. Such param-
eters may enable an administrator to fine-tune and balance
certain aspects of the FTN, such the level of security,
performance characteristics (e.g., transaction latency), and
the like.

Validator 54 checks the integrity of the VMs with an
Intrusion Detection System (IDS). For example, validator 54
may check each VM using a host-based IDS (HIDS). In such
an example, the integrity of each VM is checked using the
HIDS and network intrusion detection is handled using
firewall 44.

In some examples, the HIDS may execute in the back-
ground of the host VM and intercede when a compromise is
detected (e.g., a “stack canary,” which may detect buffer
overflow attacks). This type of system may decrease the
execution time of the HIDS, thereby reducing latency intro-
duced when checking the integrity of VMs. As another
example, the HIDS may monitor access control. Examples
of'such a HIDS include SE Linux which may detect unprivi-
leged access attempts on system resources, and system call
wrappers which may be used to monitor resource usage by
executing processes. As yet another example, the HIDS may
include a file system integrity checker that scans each file of
interest. Such file system integrity checker HIDS systems
may scan each file, or only those that have been modified
during the previous execution step of the VM. Agent HIDS
may interface with validator 54 using the unprivileged LAN.
Validator 54 may then communicate with other components
of the FTN regarding the integrity of the VMs using privi-
leged communication channels.

Validator 54 checks the integrity of worker VMs 48
between transactions. Results from validator 54 may be used
to automatically reconfigure firewall 44. For instance, the
source of the transaction that caused the compromise may be
optionally blocked at firewall 44 to prevent re-infection. As
one example, validator 54 may operate according to the
following operational algorithm: (1) wait for dispatcher 46
to signal that a VM is ready to be validated, (2) pause the
VM (optionally, depending upon the specific agent HIDS),
(3) check the integrity of the VM using the HIDS, such as
by executing the HIDS and requesting results from the HIDS
agent if the HIDS is not a real-time HIDS, (4) signal
checkpointer 56 when a VM has been checked and is
determined to be uncompromised, and (5) enter the check-
point results into a log (such as for later forensic analysis).
The validator may continue to operate according to the
operational algorithm by looping through the algorithm
beginning from operation (1).

In some examples, multiple HIDS agents may be
executed for validation. For instance, one or more of a first
class of agents may monitor the kernel, one or more of a
second class of HIDS agents may monitor executing pro-
cesses, and one or more of a third class of HIDS agents may
monitor data structures in memory or on disk. The type of
HIDS select may depend upon the server the FIN is
running. For instance, a database FTN may use a HIDS
agent to monitor the integrity of database tables.

In certain examples, a HIDS may be unable to ascertain
the time or cause of a compromise, possibly due to a delay

40

45

65

14

between the time of attack (TOA) and the time of detection
(TOD). As another example, some attacks may not be
atomic. That is, some attacks may take a number of time
steps to complete. To account for such time delays or
non-atomic attacks, a configurable parameter may be set to
enable the FTN to roll back an arbitrary number of trans-
actions. The ability to roll back to an arbitrary point may
provide flexibility in recovering from attacks that are not
atomic or were detected after a period of time. The roll back
parameter may be tuned for one or more of the type of IDS
used by the FTN or the type of compromises detectable by
the IDS.

Other virtual machines, such as virtual machines preced-
ing the compromised virtual machines in the pipeline, may
also be isolated. This may provide an ability to roll back to
an arbitrary point, which may provide flexibility in recov-
ering from attacks that are not atomic, e.g., attacks that took
a number of time steps to complete.

In certain examples, rather than using HIDS executing on
the VMs, validator 54 may utilize Virtual Machine Intro-
spection (VMI). By utilizing VMI, validator 54 may exam-
ine the state of a VM via the hypervisor over which the VM
executes. The VMI-based validation may improve valida-
tion accuracy because it may not be detectable by software
executing on the VM, and it may not be hidden by rootkits.

Checkpointer 56 checkpoints the processing pipeline of
virtual machines (e.g., worker VMs 48) by recording a state
for each of the plurality of virtual machines. Checkpointer
56 may save the state of VMs operating at one or more
levels, such as at one or more of the hardware-level, oper-
ating system-level, or application-level. Checkpointing
hardware-level VMs involves saving the state of the VM’s
disk and RAM to the host’s disk. Operating system—Ilevel
VMs are a lighter-weight abstraction that may enable check-
pointer 56 to save only the RAM used by the VM, rather
than save unused RAM to the disk of the VM host. In some
examples, Checkpointer 56 may checkpoint application-
level VMs by patching a kernel or instrumenting a scripted
or interpreted programming language such as Python or
Java. Such application checkpointing may help to defend
against process-hijacking attacks.

In certain examples, the time for checkpointer 56 to
record a state for each of the plurality of virtual machines
may be decreased by using a relatively small micro-kernal,
such as Damn Small Linux (DSL) and installing only the
applications and libraries used to perform the various opera-
tions of the FTN. In addition, the time for checkpointer 56
to record a state for each of the plurality of virtual machines
may be decreased by reducing the amount of RAM allocated
to the VM, thereby reducing the time to write the associated
RAM to the disk of the VM host. Further, checkpoint speed
may be optimized by utilizing a hard drive of the VM host
that uses solid state drive (SSD) memory because SSD
memory may typically perform sequential write operations
much faster than a traditional hard drive.

As one example, checkpointer 56 may operate according
to the following operational algorithm: (1) wait for validator
54 to signal when a VM is ready to be checkpointed, (2)
pause the VM if the VM has not been paused by Validator
54, (3) checkpoint the VM by recording the state of the VM
to the hard disk of the local VM host, (4) unpause the VM,
and (5) notify accumulator 50 and manager 52 when the VM
has been checkpointed. Checkpointer 56 may continue to
operate according to the operational algorithm by looping
through the algorithm beginning from operation (1). In

US 9,473,526 B2

15
addition, checkpointer 56 may periodically record VM
checkpoints to long-term SAN storage (e.g., SAN 39 of FIG.
D.

Checkpointer 56 may periodically archive VM check-
points to Central storage 58, thereby helping to ensure that
the disks of'the local VM hosts do not fill up. Central storage
58, in some examples, includes a hardware SAN (e.g., SAN
39 of FIG. 7) and one or more modules executable to
coordinate checkpoint management. As an example, the
checkpoint management algorithm may delete checkpoints
from central storage 58 at exponentially increasing time
intervals. For instance, the checkpoint management algo-
rithm may cause central storage 58 to store every one of the
latest one thousand checkpoints, one in ten of the most
recent ten thousand checkpoints, one in one hundred of the
most recent one hundred thousand checkpoints, and so on.
Such an algorithm may allow for farther roll-back at the
expense of granularity of stored checkpoints.

When validator 54 determines that one or more of worker
VMs 48 is compromised, the FIN components enter a
recovery mode of operation. As an example, the FTN-wide
recovery mode of operation may operate according to the
following operational algorithm: (1) validator 54 notifies
other components of the FTN that a VM is compromised, (2)
FTN components cease regular operation (e.g., accumulator
50 does not forward the response to the hostile transaction
to network clients 41), (3) manager 52 pauses each of the
plurality of worker VMs 48, (4) manager 52 signals check-
pointer 56 to record the state of each of worker VMs 48 (in
parallel) for forensic analysis, (5) manager 52 requests the
hostile transaction request from dispatcher 46 and forwards
it to firewall 44, (6) firewall 44 uses the hostile transaction
to reconfigure to prevent further attacks from that vector, (7)
dispatcher 46 continues to accept and buffer incoming client
transaction requests, (8) manager 52 removes those worker
VMs that have processed the hostile transaction from the
active pool of worker VMs, (9), manager 52 promotes the set
of last known uncompromised VMs to earlier stages of the
worker VM pipeline, (10) manager 52 creates new VMs at
the tail end of the pipeline to once again form a pipeline of
n VMs, and (11) manager 52 notifies other components of
the FTN to resume normal operation.

Firewall 44 may reconfigure itself after a restoration to
prevent future attacks from the same vector. Firewall 44 may
be signature-based, rather than anomaly-based, to help
reduce false positives. Firewall 44 may include two enforce-
ment engines: an IP-level packet inspection to analyze
packet headers, and deep packet inspection to analyze packet
data. In addition firewall 44 may include algorithms to
process hostile transactions (as determined by validator 54)
to produce firewall policies for blocking similar future
transactions. For example, such policies may include block-
ing the attacker’s IP or IP block, and performing deep packet
inspection to isolate the data sent to the FTN’s service and
creating a signature for blocking similar requests.

The predicted efficiency of an FTN in comparison to a
standard server may be estimated by the following math-
ematical model equation:

B Txn
T Tem+v+C

Equation 1

where “e” is the efficiency of the FTN, “I” is the average
round trip time of a transaction, “n” is the number of worker

10

15

20

25

30

40

45

50

55

60

65

16
VMs in the pool, “V” is the time to validate a VM, and “C”
is the time to checkpoint a VM.

FIG. 9 illustrates a graph of a predicted efficiency of an
FTN versus the size of the worker VM pool according to
Equation 1 using the following constant values: “T=0.1
seconds,” “V=1 second,” and “C=5 seconds.”

In general, the techniques described herein may be imple-
mented in hardware, software, firmware, or any combination
thereof. Any features described as modules or components
may be implemented together in an integrated logic device
or separately as discrete but interoperable logic devices. If
implemented in software, the techniques may be realized at
least in part by a non-transitory computer-readable medium
to store instructions that, when executed, performs one or
more of the methods described above. The computer-read-
able medium may form part of a computer program product,
which may include packaging materials. The computer-
readable medium may comprise random access memory
(RAM) such as synchronous dynamic random access
memory (SDRAM), read-only memory (ROM), non-volatile
random access memory (NVRAM), clectrically erasable
programmable read-only memory (EEPROM), FLASH
memory, magnetic or optical data storage media, and the
like. The techniques additionally, or alternatively, may be
realized at least in part by a computer-readable communi-
cation medium that carries or communicates code in the
form of instructions or data structures and that can be
accessed, read, and/or executed by a computer.

The program code may be executed by one or more
processors, such as one or more digital signal processors
(DSPs), general purpose microprocessors, application spe-
cific integrated circuits (ASICs), field programmable logic
arrays (FPGAs), or other equivalent integrated or discrete
logic circuitry. Accordingly, the term “processor,” as used
herein may refer to any of the foregoing structures or any
other structure suitable for implementation of the techniques
described herein, including one or more hardware-based
MiCroprocessors.

Various embodiments of the invention have been
described. These and other embodiments are within the
scope of the following claims.

The invention claimed is:
1. A method comprising:
receiving a plurality of transaction requests associated
with one or more network communication sessions;
distributing copies of the transaction requests to a plural-
ity of virtual machines over a plurality of time steps to
form a processing pipeline of the virtual machines;
upon dispatching a threshold number (n) of the transac-
tion requests to the plurality of virtual machines,
detecting whether any of the virtual machines in the
processing pipeline has been compromised;
when none of the virtual machines in the processing
pipeline has been compromised, check-pointing the
processing pipeline of the virtual machines by record-
ing a state for each of the plurality of virtual machines;
and
when at least one of the virtual machines in the processing
pipeline has been compromised, removing the compro-
mised virtual machines from the processing pipeline.
2. The method of claim 1, further comprising, instantiat-
ing new virtual machines and assigning the new virtual
machines within stages previously associated with non-
compromised virtual machines that have been promoted to
earlier stages in the processing pipeline.

US 9,473,526 B2

17

3. The method of claim 2, further comprising initializing
the new virtual machines to a state previously recorded
when checkpointing the processing pipeline.

4. The method of claim 1, wherein receiving the plurality
of transaction requests comprises receiving, with a server, a
plurality of inbound transaction requests from one or more
client devices.

5. The method of claim 1,

wherein receiving the plurality of transaction requests

comprises receiving a plurality of outbound transaction
requests from application software executing on a
client device; and

wherein distributing copies of the transaction requests to

the plurality of virtual machines comprises distributing
the copies of the transaction requests to a plurality of
virtual machines executing on the client device.
6. The method of claim 1, further comprising:
executing transactions corresponding to each of the trans-
action requests on each of the virtual machines; and

for each of the virtual machines, after execution of each
transaction, synchronizing resultant state data from the
virtual machine to a subsequent one of the virtual
machines in the processing pipeline of virtual
machines.

7. A network node comprising:

a hardware-based processing system having a set of one

or more processing units;

one or more hypervisors, each respective hypervisor of

the one or more hypervisors executing on a respective
processing unit of the one or more processing units;

a plurality of virtual machines executing on each of the

one or more hypervisors;

an application-level dispatcher configured to receive a

plurality of transaction requests associated with one or
more network communication sessions, wherein, for
each respective transaction request of the plurality of
transaction requests, the application-level dispatcher
distributes a respective copy of the respective transac-
tion request to each respective virtual machine of the
plurality of virtual machines over a plurality of time
steps to form a processing pipeline of the virtual
machines;

one or more intrusion detection systems configured such

that, upon the distribution of a threshold number (n) of
the transaction requests to the plurality of virtual
machines by the application-level dispatcher, the one or
more intrusion detection systems detect whether any of
the virtual machines in the processing pipeline has been
compromised; and

a control unit configured to coordinate with the one or

more hypervisors to checkpoint the processing pipeline
of the virtual machines by recording a state for each of
the plurality of virtual machines when none of the
virtual machines in the processing pipeline has been
compromised,

wherein, when at least one of the virtual machines in the

processing pipeline has been compromised, the control
unit instructs the hypervisor to remove the compro-
mised virtual machines from the processing pipeline.

8. The network node of claim 7, wherein the processing
units include a plurality of processing units connected to the
application-level dispatcher by an unprivileged local area
network within the network node and connected to the
control unit by a privileged local area network within the
network node.

9. The network node of claim 7, wherein the application-
level dispatcher provides a store-and-forward component

20

25

30

35

40

45

55

18

that sends the copies of the transaction requests to the virtual
machines after each synchronization time step and sends
responses to clients only after the one or more intrusion
detection systems verify integrity of the virtual machines
post-transaction.

10. The network node of claim 7, wherein the control unit
instantiates new virtual machines and assigns the new virtual
machines within stages previously associated with the non-
compromised virtual machines that have been promoted to
earlier stages in the processing pipeline.

11. The network node of claim 10, wherein the control
unit initializes the new virtual machines to a state previously
recorded when check-pointing the processing pipeline.

12. The network node of claim 7, wherein the network
node comprises a server.

13. The network node of claim 7, wherein the network
node comprises a client device, the client device further
comprising:

application software executing on the network node that

issues the transaction requests as outbound transaction
requests to a server,

wherein the application-level dispatcher receives the

transaction requests from the application software.

14. The network node of claim 7, wherein the network
node comprises a firewall, gateway, router or switch.

15. The network node of claim 7, wherein each of the
transaction requests corresponds to a respective transaction
in a plurality of transactions and after execution of each
transaction of the plurality of transactions, each of the virtual
machines synchronize resultant state data to a subsequent
one of the virtual machines in the processing pipeline of
virtual machines.

16. A network node comprising:

one or more non-transitory computer-readable media stor-

ing instructions; and

one or more processing units configured to execute the

instructions, execution of the instructions causing the

network node to:

provide one or more hypervisors, each respective
hypervisor of the one or more hypervisors executing
on a respective processing unit of one or more
processing units;

provide a plurality of virtual machines executing on
each of the one or more hypervisors;

provide an application-level dispatcher configured to
receive a plurality of transaction requests associated
with one or more network communication sessions,
wherein, for each respective transaction request of
the plurality of transaction requests, the application-
level dispatcher distributes a respective copy of the
respective transaction request to each respective vir-
tual machine of the plurality of virtual machines over
a plurality of time steps to form a processing pipeline
of the virtual machines;

provide one or more intrusion detection systems con-
figured such that, upon the distribution of a threshold
number (n) of the transaction requests to the plurality
of virtual machines by the application-level dis-
patcher, the one or more intrusion detection systems
detect whether any of the virtual machines in the
processing pipeline have been compromised; and

coordinate with the one or more hypervisors to check-
point the processing pipeline of the virtual machines
by recording a state for each of the plurality of virtual
machines when none of the virtual machines in the
processing pipeline has been compromised,

US 9,473,526 B2
19

wherein, when at least one of the virtual machines in
the processing pipeline has been compromised, the
network node instructs the hypervisor to remove the
compromised virtual machines from the processing
pipeline. 5

20

